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Abstract 

  In this paper we proposed efficient implementation of floating point multiplier which is technology 
independent pipelined design. This also handles the case of overflow and underflow cases. This verified that they 
can decrease the flipflop latency over Xilinx flipflop core. 
 
Keywords: MFLOPS, Multiplier, CAD Design Flow.      

Introduction
In computing, floating point describes a method 

of representing an approximation of a real number in a 
way that can support a wide range of values. The 
numbers are, in general, represented approximately to a 
fixed number of significant digits (the mantissa) and 
scaled using an exponent. The base for the scaling is 
normally 2, 10 or 16. The typical number that can be 
represented exactly is of the form: The idea of floating-
point representation over intrinsically integer fixed-point 
numbers, which consist purely of significant, is that 
expanding it with the exponent component achieves 
greater range. For instance, to represent large values, e.g. 
distances between galaxies, there is no need to keep all 
39 decimal places down to femtometre-resolution 
(employed in particle physics). Assuming that the best 
resolution is in light years, only the 9 most significant 
decimal digits matter, whereas the remaining 30 digits 
carry pure noise, and thus can be safely dropped. This 
represents a savings of 100 bits of computer data storage. 
Instead of these 100 bits, much fewer are used to 
represent the scale (the exponent), e.g. 8 bits or 2 
decimal digits. Given that one number can encode both 
astronomic and subatomic distances with the same nine 
digits of accuracy, but because a 9-digit number is 100 
times less accurate than the 11 digits reserved for scale, 
this is considered a trade-off exchanging range for 
precision. The example of using scaling to extend the 
dynamic range reveals another contrast with fixed-point 
numbers: Floating-point values are not uniformly spaced. 
Small values, close to zero, can be represented with 
much higher resolution (e.g. one femtometre) than large 
ones because a greater scale (e.g. light years) must be 
selected for encoding significantly larger values. That is, 
floating-point numbers cannot represent point 
coordinates with atomic accuracy at galactic distances, 
only close to the origin.  Floating point representation 

makes numerical computation much easier. You could 
write all your programs using integers or fixed-point 
representations, but this is tedious and error-prone. 

 
Fig 1.0 Simple floating point multiplication 
For example, you could write a program with 

the understanding that all integers in the program are 100 
times bigger than the number they represent. The integer 
2345, for example, would represent the number 23.45. 
As long as you are consistent, everything works.  This is 
actually the same as using fixed point notation. In fixed 
point binary notation the binary point is assumed to lie 
between two of the bits. This is the same as an 
understanding that the integer the bits represent should 
be divided by a particular power of two.  But it is very 
hard to stay consistent. A programmer must remember 
where the decimal (or binary) point "really is" in each 
number. Sometimes one program needs to deal with 
several different ranges of numbers. Consider a program 
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that must deal with both the measurements that describe 
the dimensions on a silicon chip (say 0.000000010 to 
0.000010000 meters) and also the speed of electrical 
signals, 100000000.0 to 300000000.0 meters/second. It is 
hard to find a place to fix the decimal point so that all 
these values can be represented.  Notice that in writing 
those numbers (0.000000010, 0.000010000, 
100000000.0, and 300000000.0) I was able to put the 
decimal point where it was needed in each number.  We 
present a pipelined 32-bit Instruction Set Extension (ISE) 
for complex valued floating point operations. The ISE 
was implemented in the NIOS II processor, and the 
constraint on the number of inputs and outputs of the 
register bank was overcome by distributing the reads and 
writes of the instruction over several cycles. The 
hardware size was reduced by sharing hardware between 
instructions. The main contribution of this work is that 
the designed ISE performs division, multiplication, 
addition and subtraction on complex valued numbers. 
Comparing the use of the embedded multiplier and 
divider in a NIOS II processor to the designed ISE for an 
image processing problem, a speedup of 12.2 times was 
observed. Multipliers play an important role in today’s 
digital signal processing and various other applications. 
With advances in technology, many researchers have 
tried and are trying to design multipliers which offer 
either of the following design targets – high speed, low 
power consumption, regularity of layout and hence less 
area or even combination of them in one multiplier thus 
making them suitable for various high speed, low power 
and compact VLSI implementation. The common 
multiplication method is “add and shift” algorithm. In 
parallel multipliers number of partial products to be 
added is the main parameter that determines the 
performance of the multiplier. To reduce the number of 
partial products to be added, Modified Booth algorithm 
is one of the most popular algorithms. To achieve speed 
improvements Wallace Tree algorithm can be used to 
reduce the number of sequential adding stages. Further 
by combining both Modified Booth algorithm and 
Wallace Tree technique we can see advantage of both 
algorithms in one multiplier. However with increasing 
parallelism, the amount of shifts between the partial 
products and intermediate sums to be added will increase 
which may result in reduced speed, increase in silicon 
area due to irregularity of structure and also increased 
power consumption due to increase in interconnect 
resulting from complex routing. On the other hand 
“serial-parallel” multipliers compromise speed to achieve 
better performance for area and power consumption. The 
selection of a parallel or serial multiplier actually 
depends on the nature of application. In this lecture we 
introduce the multiplication algorithms and architecture 

and compare them in terms of speed, area, power and 
combination of these metrics. 

 
Fig1.1 Double precision floating point multiplier 

 
Floating Point Arithmetic 
   Arithmetic operations on floating point 
numbers consist of addition, subtraction, multiplication 
and division the operations are done with algorithms 
similar to those used on sign magnitude integers (because 
of the similarity of representation) -- example, only add 
numbers of the same sign.  If the numbers are of opposite 
sign, must do subtraction. Addition, subtraction, 
multiplication, division. 
 
Floating Point Multiplication Algorithm 

A pipelined multiplier based on the digit 
products can be designed using digit product generation 
logic and the digit adders. 
25 * 35 = 875 
Now for binary mutiplication 

 
Fig 3.0 Multiplication Algorithm 
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The multiplication algorithm for an N bit multiplicand by 
N bit multiplier is shown below: 
 

 
 

 
A) Serial Multiplier 

 Where area and power is of utmost 
importance and delay can be tolerated the serial 
multiplier is used. This circuit uses one adder to add the 
m * n partial products. The circuit is shown in the fig. 
below for m=n=4. Multiplicand and Multiplier inputs 
have to be arranged in a special manner synchronized 
with circuit behavior as shown on the figure. The inputs 
could be presented at different rates depending on the 
length of the multiplicand and the multiplier. Two clocks 
are used, one to clock the data and one for the reset. A 
first order approximation of the delay is O (m,n). With 
this circuit arrangement the delay is given as D =[ 
(m+1)n + 1 ] tfa. 
 

 
Fig 3.1 Serial Multiplier 

 
B) Signed multiplication 

Direct two's complement array multiplication 
can perform "direct" multiplication of two's complement 
numbers without requiring the complementing stages, 
significantly speeds up the multiplication process. This 
appendix will discuss two direct two's complement 
multiplication algorithms and their implementation.  
These two direct two's complement multiplication 
algorithms are Tri-section modified Pezaris two's 
complement multiplication, Baugh-Wooley two's 
complement multiplication These two algorithms are 

generally used in systems where the operands are less 
than 16-bit. They are relatively simpler than Booth 
multiplier whose structure is based on recoding the 2's 
complement operand in order to reduce the number of 
partial products to be added. Listed below are four 
arithmetic equations that describe the input/output 
relationships of the four types of generalized full adders. 

 
Operands Multiplication and Rounding 
 

 
Fig 3.1 Significant multiplication ,and Rounding 

 
 The exponents of the two registers are 
subtracted.  The difference is positive, indicating that the 
exponent in register A (on the left is larger.  Control 
selects the exponent from register A (by asserting 0 at the 
multiplexer on the left) to pass to the next section of the 
adder to be used as the preliminary result for the 
exponent.  The difference between the two exponents is 
2, indicating the significant in register B must be shifted 
right two places.  Before entering the ALU or the shift 
register, the 23-bit significant are expanded to 32 bits by 
inserting the leading implicit 1 and filling in leading 0's.  
(To provide for round off, trailing 0's may also be 
appended to the original 23 bits.) Control selects the 
(expanded) contents of register B to be placed in the shift 
register and the contents of register A (expanded) to be 
sent directly to the ALU.  The contents of register B are 
shifted right two places and the two terms are added. In 
this example, the 23 bits of the significant are mapped 
into bits 24 -- 2 during the process of expanding to 32 
bits.  Bits 0 and 1 are set to 0 initially and used for 
calculating round off.  The implicit leading 1 is set in bit 



[Rani, 2(11): November, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3223-3226] 

 

25 and bits 26 -- 31 hold leading 0's.  The input to the 
ALU (after shifting) is shown in the diagram below.  
(Note!  Since the last two bits of the significant in 
register B are both 0, shifting right just moves these two 
0's into the additional trailing bits.) 

 
Fig 3.2 Range of Floating point numbers 

 
Conclusion 

This paper presents an implementation of a 
floating point multiplier that supports the IEEE 754-2008 
binary interchange format; the multiplier doesn’t 
implement rounding and just presents the significant  
multiplication result as is (48 bits); this gives better 
precision if the whole 48 bits are utilized in another unit; 
i.e. a floating point adder to form a MAC unit achieves 
301 MFLOPs. This verified that they can decrease the 
flipflop latency over Xilinx flipflop core. 
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